On Random High Density Subset Sums
نویسنده
چکیده
In the Subset Sum problem, we are given n integers a1, . . . , an and a target number t, and are asked to find the subset of the ai’s such that the sum is t. A version of the subset sum problem is the Random Modular Subset Sum problem. In this version, the ai’s are generated randomly in the range [0,M), and we are asked to produce a subset of them such that the sum is t(modM). The hardness of RMSS depends on the relationship between the parameters M and n. When M = 2 2), RMSS can be solved in polynomial time by a reduction to the shortest vector problem. When M = 2 , the problem can be solved in polynomial time by dynamic programming, and recently an algorithm was proposed that solves the problem in polynomial time for M = 2 2 . In this work, we present an algorithm that solves the Random Modular Subset Sum problem for parameter M = 2 for < 1 in time (and space) 2 n log n . As far as we know, this is the first algorithm that performs in time better than 2 ) for arbitrary < 1.
منابع مشابه
Strong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملOn the Complete Convergence ofWeighted Sums for Dependent Random Variables
We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.
متن کاملComplete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables
Let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
متن کاملOn the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کاملThe Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره شماره
صفحات -
تاریخ انتشار 2005